Trigonometry	Name:
Study Guide 8	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (2 points) Find the area of the triangle ABC with a = 12 cm, b = 8 cm, and $\angle C = 40^{\circ}$.

1. _____

2. (4 points) Find the remaining parts of the triangle ABC with $\angle A = 130^{\circ}$, $\angle B = 20^{\circ}$, and b = 6 ft.

2. ____

3. (2 points) Find the area of the triangle ABC with a = 8 ft, b = 10 ft, and $\angle C = 140^{\circ}$.

3. ____

4. (2 points) Find the area of the triangle ABC with a = 7 ft, b = 10 ft, and c = 15 by using the Heron's formula

4. _____

5. (4 points) Find the remaining parts of the triangle ABC with $\angle C = 65^{\circ}$, a = 5, and b = 8 ft.

5. _____

6. (4 points) Find the remaining parts of the triangle ABC with $\angle B = 48^{\circ}$, a = 7, and c = 6 ft.

6. _

7. (5 points) From a point at ground level, the angle of elevation to the top of the mountain was 28° , and if you get one kilometer closer to the mountain, the angle of elevation becomes 45° . Use this information to find the height of the mountain. Detailed drawing required.

7. _____

8. (5 points) Observers in two towns on either side of a mountain have angle of elevation 28° and 46° . Find the horizontal distance between the cities if the height of the mountain is 12,000 ft. Detailed drawing required.

8. _____

9. (5 points) Two points A and B lie on opposite sides of a river. Another point C is located on the same side of the river as B at a distance of 230 ft from B.If the angle ABC is 105° and the angle ACB is 20° . Find the distance across the river. Detailed drawing required.

	9
10. Basic computations:	
(a) (2 points) Convert to degrees: $\frac{5\pi}{12}$	
(b) (2 points) Convert to radians using π notation: 165°	(a)
	(b)

- 11. For a circle with radius r, a central angle θ radians subtends an arc of length $s = r\theta$, use this formula to find the arc length for
 - (a) (2 points) r = 5 in, $\theta = 3$ radians

(n)	
(a)	

(b) (2 points) r = 12 ft, $\theta = 15^{\circ}$

(b) _____

- 12. For a circle with radius r, the area A of a circular sector with central angle θ radians is given by $A = \frac{1}{2}r^2\theta$, use this formula to find
 - (a) (2 points) the area of a circular sector with r = 6 in and $\theta = \frac{2\pi}{3}$ radians.

(b) (2 points) the area of a circular sector with r = 6 ft and $\theta = 120^{\circ}$.

(b) _____

(a) _____

13. (5 points) From a radar station, town A is at the bearing of $N47^{\circ}W$, and the distance is 48 miles. From the same radar station, town B is at the bearing of $S20^{\circ}W$, and the distance is 40 miles. Find the horizontal distance between the cities. Detailed drawing required.