Trigonometry	Name:
Study Guide 8	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat \& Organized

1. (2 points) Find the area of the triangle $A B C$ with $a=12 \mathrm{~cm}, b=8 \mathrm{~cm}$, and $\angle C=40^{\circ}$.
2.
3. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle A=130^{\circ}, \angle B=20^{\circ}$, and $b=6 \mathrm{ft}$.
4.
5. (2 points) Find the area of the triangle $A B C$ with $a=8 \mathrm{ft}, b=10 \mathrm{ft}$, and $\angle C=140^{\circ}$.
6.
7. (2 points) Find the area of the triangle $A B C$ with $a=7 \mathrm{ft}, b=10 \mathrm{ft}$, and $c=15$ by using the Heron's formula
8. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle C=65^{\circ}, a=5$, and $b=8 \mathrm{ft}$.
9.
10. (4 points) Find the remaining parts of the triangle $A B C$ with $\angle B=48^{\circ}, a=7$, and $c=6 \mathrm{ft}$.
11.
12. (5 points) From a point at ground level, the angle of elevation to the top of the mountain was 28°, and if you get one kilometer closer to the mountain, the angle of elevation becomes 45°. Use this information to find the height of the mountain. Detailed drawing required.
13. (5 points) Observers in two towns on either side of a mountain have angle of elevation 28° and 46°. Find the horizontal distance between the cities if the height of the mountain is $12,000 \mathrm{ft}$. Detailed drawing required.
14.
15. (5 points) Two points A and B lie on opposite sides of a river. Another point C is located on the same side of the river as B at a distance of 230 ft from B.If the angle $A B C$ is 105° and the angle $A C B$ is 20°. Find the distance across the river. Detailed drawing required.
16.
17. Basic computations:
(a) (2 points) Convert to degrees: $\frac{5 \pi}{12}$
(a)
(b) (2 points) Convert to radians using π notation: 165°
(b)
18. For a circle with radius r, a central angle θ radians subtends an arc of length $s=r \theta$, use this formula to find the arc length for
(a) (2 points) $r=5 \mathrm{in}, \theta=3$ radians
(a)
(b) (2 points) $r=12 \mathrm{ft}, \theta=15^{\circ}$
(b) \qquad
19. For a circle with radius r, the area A of a circular sector with central angle θ radians is given by $A=\frac{1}{2} r^{2} \theta$, use this formula to find
(a) (2 points) the area of a circular sector with $r=6$ in and $\theta=\frac{2 \pi}{3}$ radians.
(a) \qquad
(b) (2 points) the area of a circular sector with $r=6 \mathrm{ft}$ and $\theta=120^{\circ}$.
(b)
20. (5 points) From a radar station, town \mathbf{A} is at the bearing of $N 47^{\circ} \mathrm{W}$, and the distance is 48 miles. From the same radar station, town B is at the bearing of $S 20^{\circ} \mathrm{W}$, and the distance is 40 miles. Find the horizontal distance between the cities. Detailed drawing required.
21.
